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A method is proposed to provide an efficient correction to the potential and field of 
an isolated charge distribution calculated by means of the Fourier transform technique. 
The method also applies to other problems involving Poisson’s or Yukawa’s equation 
for isolated sources. 

The numerical treatment of many physical systems requires the repeated solution 
of an equation of the type 

4(r) - Wr) = PW (1) 

with p given on some discrete number of mesh points in two- or three-dimensional 
space. For 01 = 0 this is just Poisson’s equation which determines the electric 
potential + of a charge distribution p or the gravitational potential of some arrange- 
ment of masses. Thus, there are immediate applications in the numerical treatment 
of charged fluids, plasmas, and galaxies [ 11. In addition, the implicit formulation 
of time-dependent differential equations may require the solution of an equation 
of this type to get the physical quantity being time-stepped at an advanced time 
[2]. Finally, for N f 0, Eq. (1) determines the Yukawa potential of an assembly 
of nuclear matter, which makes it useful in nuclear physics even aside from the 
calculation of Coulomb potentials. 

Several methods have been developed to solve Eq. (1) numerically in the two- 
dimensional case, and they may be classified coarsely according to their use of 
fast Fourier transform (FFT) methods [3] as opposed to purely algebraic 
techniques. The straightforward FFT approach replaces Eq. (1) by its Fourier- 
transformed analog 

-(27dN)'k25@k) + a2&k) = p"(k) (2) 
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with 
4(k) = 2 b(r) exp[2nir - k/N] 

I 

and analogously for ,s. To simplify the notation, it was assumed that r and k vary 
on a mesh of N x N x N points (N even) with a mesh size of a for r and a-l for k, 
and each component runs over all values k times mesh size with k =I -N/2, 
-N/2 + I,..., N/2 - 1. 

Now Eq. (2) may be solved easily for the Fourier components &k) and trans- 
forming back into coordinate space yields the potential 4. 

In two dimensions, however, it is advantageous to combine a FFT in one 
dimension with an algebraic reduction method in the other dimension, as exempli- 
fied by Hackney’s FACR algorithm [4], or to use algebraic methods throughout, 
as does Buneman’s direct cyclic reduction algorithm [5]. These are about a factor 
of 2 faster than the FFT method. 

For three dimensions, on the other hand, the FFT approach tends to gain 
somewhat in attractiveness, because it is easiest to generalize and because of the 
small number of mesh points N in each dimension, which for the present generation 
of computers cannot easily transcend 64. the FFT algorithm involves many multi- 
plications with trivial factors like 1 or -1 which can be avoided by judicious 
programming. 

There is, however, another drawback to the FFT method, and that is its inflexi- 
bility with respect to boundary conditions. The only boundary condition that can 
be treated efficiently is that corresponding to a periodic repetition of source p 
and potential 4 in all three dimensions. Thus, even the simple case of an isolated 
source with the potential going to zero at infinity cannot be treated directly. 

For dealing with this case Hackney [I] recommends surrounding the charge 
distribution with empty areas on all sides by doubling the number of mesh points 
in each dimension and setting p = 0 on the additional points. Thus, in two 
dimensions the rectangle containing the charges is surrounded by three empty 
rectangles of the same size, so that the number of grid points increases by a factor 
of 4. In three dimensions the same procedure leads to an eightfold increase in 
the number of points. which aggravates time and storage problems considerably. 

The essence of this method is to keep the unrealistic boundary conditions, but 
reduce their influence in the region of interest by moving the boundaries further 
away. We shall refer to this method as the “empty-cell method.” 

The method we are proposing proceeds quite differently: We keep the boundaries 
relatively close to the charge distribution, but subtract the influence of its periodic 
repetitions in some given approximation, so that the accuracy of the solution is 
increased considerably. 

To that end, we note that the Fourier transform j?(k) of a given charge distri- 
bution p(r) will correspond to a periodic repetition of p(r), if it is transformed 
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back into coordinate space and taken to be valid outside the original cell as well. 
So it actually describes the periodic charge distribution 

(4) 

where n runs over all vectors with all components integer and p is assumed to be 
defined as zero outside its original cell of definition. The potential obtained from 
it in the way outlined above is then periodic, too: 

+ptd = 1 #(r + aNnI. 
n 

(5) 

This is the essential meaning of periodic boundary conditions. The problem is 
that 4, the exact potential of the isolated p, does not vanish outside the cell where p 
was defined, and our task is now to isolate the single contribution with II = 0 
from Eq. (5). 

To do this, we note that we are interested in 4 only inside the original cell, 
close to its “own” charge distribution p, whereas all the periodic repetitions of p 
are outside this cell at a larger distance. So it seems possible to describe them by the 
leading terms in their multipole expansion. Let 4’ denote the approximation to 4 
obtained by cutting off the multipole expansion of + after some leading terms. 
Inside the original cell we should have 

+(r + ah) N $‘(r f- ah), n#O (6) 

and we will obtain a potential with the influence of the repeated charge distribution 
subtracted approximately, by calculating 

&dr) = Adr) - n;. d’(r + aNnI (7) 

with r inside the original cell, or 

+<r> = &dr) = qbdr) + 4’(r) - C +‘(r + aNo>. ” (8) 
The advantage of the last formulation is that the sum on the right-hand side now 
is a completely periodic potential which may be calculated by the Fourier method 
from a multipole approximation p’ to p, whereas q%‘(r) inside the original cell is 
the exact field of p’, which is well known and easily calculated for the first few 
multipoles. 

Noting that the first and last terms on the right-hand side together constitute 
the field of a periodic array of charge distributions formed from p - p’, we can 
state the essence of the correction method as follows: 
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Step 1. Subtract a multipole approximation p’ from the charge distribution p. 
Step 2. Solve Poisson’s equation for p - p’ to obtain the periodic field 

E per - E;,, . 
Step 3. Add the exact field generated by p’ in the cell at the origin. 

The accuracy of this method depends essentially on two approximations. The first 
one is the neglection of the periodicity of E per - Eb,, , which was justified by the 
essentially short-range behavior of this field, depending on the accuracy of the 
multipole expansion. The second one is the replacement of the sum in Eq. (8) 
by the Fourier solution to the Poisson equation. This may be serious, because a 
large discrepancy between this solution and the exact one may introduce an 
additional error into Eq. (5) (not counting the difference due to the different 
boundary conditions). 

In the following we shall demonstrate the size of these errors with test calcu- 
lations, and we shall show that the monopole approximation already yields a 
significant improvement in accuracy, but that the monopole has to be represented 
by a sufficiently “smooth” charge distribution. The calculations were done only 
for (y. = 0, i.e., for Coulomb-type fields, but the results are easily generalizable 
to Yukawa fields. Because of the shorter range and exponential decay of the latter 
corrections should be of less importance for them. 

The calculations were carried out on a 32 x 32 x 32 mesh, and for simplicity, 
we used the complex Fourier transform. Also, to compare the more important 
physical quantities, we computed the fields directly, and not the potentials. 

When selecting an appropriate charge distribution of pure monopole character, 
we first tried a point charge. However, it was found that in this case the field 
obtained by Fourier transform methods differed considerably from the exact 
field even at the center of the region, because a point charge cannot be represented 
adequately with a finite Fourier series. We therefore chose the following spherical 
charge distribution around the point r0 : 

P’Cr> = Gi exp(-&‘2), r’ =I ( r - r. 1 

the field of which is 

E(r) = + [erf(u . r’) - 2~’ exp(-u2r’2)(n)1/2] (10) 

p’ is normalized to a total charge of unity. To test the effectiveness of the method, 
the calculation was done for a charge distribution p, which cannot be represented 
well by a monopole but has known fields, namely a superposition of two distri- 
butions according to Eq. (9) at opposing positions r,, = (-6,0,0) and (+6,0,0) 
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in the cube. The parameter a was chosen equal to 0.3. The resulting distribution 
is plotted along the x-axis in Fig. 1, together with the correcting monopole of the 
same functional shape, but located at the center. 

FIG. I. Charge distribution used for the test calculations (full curve) and correcting monopole 
charge distribution (dashed curve). 

FIG. 2. Dashed curve, field of the periodically repeated monopole charge distribution of 
Fig. 1, calculated by the Fourier transform method. Full curve, exact field of the same distribu- 
tion. The two fields differ near the boundary, but seem sufficiently equal near the center. Both 
curves were plotted with the number of discrete points used for the transform (i.e., 32). 
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Figure 2 shows the exact and the Fourier-obtained field of the monopole distri- 
bution (9). It can be seen that except for the necessary difference at the boundary, 
the Fourier solution appears sufficiently accurate. 

In Fig. 3, the corrected and uncorrected fields obtained from the Fourier method 
are presented, together with the exact field for the two-monopole system. 
Apparently, the correction improves the result drastically in the range from about 
x = 6 to .X = 12. The range of 5 96 accuracy of the solution is extended from 
(-7, +7) to (- 12, +12), and even outside that the field may be sufficiently 
accurate for some purposes. Since the charge distribution in this case was practically 
confined to the (- 12, +12) range, we conclude that the actually used portion of 
space is now about 42 s’, of the cell, whereas in the empty-cell method only 12.5 7; 
are used. 

To get an idea of the magnitude of error throughout space, we show contour 
maps of the relative error 

i E - J&act i/l J&act I G;l 

in five different x-y planes located at z = 0, 4, 8, 12, 16, in Figs. 4-8. It should be 
noted that this definition of the error also takes into account directional deviations. 

FIG. 3. Full curve, exact field of the two-monopole distribution of Fig. 1. Dash-dotted, 
Fourier solution with periodic behavior. Short dashes, correction to the field with the method 
discussed in this paper. Long dashes, final corrected field showing marked improvement towards 
the boundary. 
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FIG. 4. Contour map of the relative error CT’,) in the field for the situation of Fig. 3 with the 
charges aligned along the x-axis. The error is plotted in the X-Y plane at z = 0. 

Apparently the behavior observed in the z = 0 plane along the x-axis holds true 
throughout space, in fact it is even better off this plane because the charge comes 
closest to the boundary on this plane. 

Thus, even the simple monopole correction yields a significant improvement in 
accuracy. The computing time for evaluating the three field components on 
32 x 32 x 32 mesh points was 2 set on an IBM-360/91. 

If, however, aside from the gain in space, computation times are important, 
too, the calculation of the exact field according to Eq. (10) may be too involved. 
This can be avoided, if the total charge of the system is kept fixed and its center 
remains at the same position, which should hold for all dynamical systems with 
a fixed charge density over mass density ratio. Then the exact monopole field can 
be computed once and stored on tape. 

It should be noted that although we have tested only fields in this discussion, 
because they are the physically most important quantity, the correction may to 
some advantage be done on the potential and the field components may then be 
obtained by numeric differentiation, so that only one correction is necessary. 

Finally, we have presented the method in its simplest, straightforward appli- 
cation. lt is clear to see that only minor modifications are needed to use it in two- 
dimensional calculations, and if a mixed Fourier-algebraic method is used with 
Fourier analysis in only one dimension, the correction may be used in this one 
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FIG. 5. Contour map of the relative error (“,/,) in the field for the situation of Fig. 3 with the 
charges aligned along the x-axis. The error is plotted in the x-y plane at z = 4. 

FIG. 6. Contour map of the relative error (%) in the field for the situation of Fig. 3 with the 
charges aligned along the s-axis. The error is plotted in the x-y plane at z = 8. 
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FIG. 7. Contour map of the relative error (%) in the field for the situation of Fig. 3 with the 
charges aligned along the x-axis. The error is plotted in the x-y plane at z = 12. 

FIG. 8. Contour map of the relative error (%) in the field for the situation of Fig. 3 with the 
charges aligned along the x-axis. The error is plotted in the x-y plane at z = 16. 
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dimension. Furthermore, an even higher accuracy may be obtained by including 
higher-order multipoles in the expansion (this requires finding “smooth” charge 
distributions of the given multipolarity) or, on the other hand, using a different 
approximating charge distribution of arbitrary type with known field. The only 
requirement this has to fulfill is that it should reproduce the long-range behavior 
of the field. 

REFERENCES 

1. R. W. HOCKNEY, Methods Comput. Phys. 9 (1970), 135. 
2. C. Y. WONG, J. A. MARUHN, AND T. A. WELTON, to appear. 
3. J. W. C~LEY AND J. W. TUKEY, Math. Comp. 19 (1965), 297. 
4. R. W. HOCKNEY, in “Proceedings of the Conference on Numerical Simulation of Plasma,” 

Los Alamos, 1968. 
5. 0. BIJNEMAN, in “Proceedings of the Conference on Numerical Simulation of Plasma,” Los 

Alamos. 1968. 


